
The Philippine Statistician, 2004
Vol. 53, Nos. 1-4, pp. 67·76

67

A Binary Sequence Generator Based on the Thue-Morse
Sequence and Multiples of Primes

Joel Reyes Noche'

Received May, 2004; Revised August, 2004

ABSTRACT

An apparently novel binary sequence generator that uses reversible operations and does not
use a seed is shown to perform well in the DIEHARD tests, a popular set of tests for
randomness of uniformly distributed numbers. The generator inverts every p bits of the Thue
Morse sequence, where p is a prime number, and does this for the first f prime numbers.
Samples from the resulting binary sequence can be used in statistical applications requiring
random numbers.

Key words: Thue-Morse sequence, randomness, uniform distribution, prime numbers,
DIEHARD

1. INTRODUCTION

Large quantities of "random" numbers are currently in demand (Hayes, 2001) for
applications in information security and scientific computation, among others. The latter
includes statistical random sampling such as those used in the bootstrap method (Diaconis
and Efron, 1983) and in the Monte Carlo method (Eckhardt, 1987).

In this paper, a modest definition of randomness is used: the randomness of a binary
sequence is described by its performance in commonly accepted statistical tests.

Pseudo-random number generators (PRNGs) usually refer to generators 'of values
having a uniform distribution over the interval (0,1). (Arbitrary distributions are usually
generated by applying transformations to these values.) PRNGs differ from (true) random
number generators (RNG) in that the former perform deterministic operations on a seed
value, while the latter rely on a non-deterministic source of randomness (usually a physical
processsuch as radioactive decay or thermal noise).

Surveys of PRNGs (L'Ecuyer (1994), L'Ecuyer (2004» classify PRNGs into linear
generators and nonlinear generators. Linear generators include multiple recursive (which
include linear congruential and lagged-Fibonacci), multiply-with-carry (which include add
with-carry and subtract-with-borrow), linear feedback shift register (LFSR), generalized
feedback shift register (GFSR), twisted GFSR, and combinations of these. Examples of
nonlinear generators mentioned are multiplicative-inversive, quadratic, and cubic. The
binary sequence generator presented here does not seem to fall into any of these
classifications.

Assistant Professor, Department of Electrical and Electronics Engineering, College of Engineering,
University of the Philippines, Diliman, 1101, Quezon City, Philippines.
E-mail: joel.noche@ieee.org.ph



68 Noche: A Binary Sequence Generator Based on the
Thue-Morse Sequence and Multiples of Primes

The binary sequence generator presented here differs from the usual PRNG in two
ways: it outputs a large binary sequence at one time (instead of generating its output a few
bits at a time), and it does not require a seed value. Of course, the output values of PRNGs
can be concatenated to form a large sequence, and there already exist binary sequence
generators that can work with practically no seed (see, for example, Wolfram (2002)).

In some PRNGs, such as those that use the modulo operation, the operations may not
be reversible, that is, information may be lost. The binary sequence generator presented here
uses reversible operations; given the values at any step in the generation, any past values can
be calculated. Even so, the binary sequence it generates performs well in a popular set of
randomness tests.

2. MATERIALS AND METHODS

The Thue-Morse binary sequence (also known as the Prouhet-Thue-Morse sequence)

{x(n)to = 0, 1, 1,0, 1,0,0, 1, 1,0,0, 1,0, 1, 1,0, '" can be defined or generated in many
- I

ways (see, for example, Allouche and Shall it (1999) and Wolfram (2002, pp. 83, 890, 892,
895, 944, 1073, 1092, and 1186)). One algorithm to generate its first 2m bits is shown in
Figure 1 (where -, denotes the logical NOT operation).

Figure 1. An Algorithm to Generate the First 2m Bits
of the Thue-Morse Sequence

x(o) - °
for n =°to m - 1

for i =°to 2
n

- 1
x(2

n + i) - :xU)

A sequence {a(n)} is said to be uniformly recurrent if for each finite block of symbols
w occurring in {a(n)} there exists an integer j such that for all i, the sub-block aU+l), ... ,
aU+j) contains an occurrence of w. A sequence {a(n)} is said to be ultimately periodic if
there exists integers k ~ 1, N ~ °such that aU) = aU+k) for all i ~ N. Among the many
properties of the Thue-Morse sequence, of main interest here is the fact that it is uniformly
recurrent but not ultimately periodic (Allouche and Shall it, 1999). Practically speaking, the
regularity of the sequence makes it easy to generate and its non-periodicity invites
investigation on its usefulness in PRNGs.

Note that bits whose order in the sequence is a multiple ofp, where p is an odd prime
number, are not functions of each other when using the algorithm in Figure 1. That is, to
generate x(ap - 1) = x(2 n + i) = -'x(i), where a is a natural number, the values of i that are
used are never equal to ap - 1. Equivalently, when generating x(ap) = x(2 n + i + 1) = :xU +
1), the values of i + 1 used are never multiples ofp. This can be seen as follows: if i + I was
a multiple ofp, then 2n should also be a multiple of p. But since 2n is never a multiple ofp,
then i + 1 is not a multiple ofp.

This leads to an interesting method of adding "disorder" to the original sequence:
invert the bits whose order in the sequence is a multiple of p, and do this sequentially for



The Philippine Statistician, 2004 69

increasing p, for the firstf odd prime numbers. (Odd prime numbers are chosen because no
"disorder" is introduced by inverting all the even bits, that is, the multiples of the only even
prime number 2.)

3. RESULTS

One popular way to test PRNGs and RNGs is the DIEHARD series of tests
(Marsaglia, 1995). For example, Intel (1999) has used it to test its hardware RNG.
DIEHARD contains fifteen tests for randomness of uniformly distributed numbers. Care
should be taken when running these tests. For example, Marsaglia reports that the hardware
RNGs he tested failed "spectacularly." Davies (1997) found that the supposed failures were
mostly due to a data handling error: each byte with a value of 10 was being recorded as two
bytes with values of 13 and 10 (a carriage return followed by a line feed). Another possible
problem is the different conventions for the order in which the bits or bytes are stored in a
word. The rearrangement of bytes when copying between computers with different
conventions can affect the results of correlations tests and other tests (Davies, 2000). In this
work, both problems are avoided: the output is saved as a binary file (not a text file), and no
conversions between different operating systems or computer systems are done.

Details of the tests and the associatedp-values are in Marsaglia (1995). A short list of
the fifteen tests as well as their associated p-values is shown in Table 1.

Table 1. List of DIEHARD Tests and Associated p-values

DIEHARD Tests p-values
I. Birthday Spacings PI

2. Overlapping Permutations P2, P3

3. Ranks of 31 x31 and 32x32 matrices P4,PS

4. Ranks of 6x8 Matrices P6

5. Monkey Tests on 20-bit Words P7 -P26

6. Monkey Tests OPSO, OQSO, DNA P27 - P49, PSO - P77, P78 - PI08

7. Count the I's ina Stream of Bytes P109, PliO

8. Count the I's in Specific Bytes Pili - PI35

9. Parking Lot Test P136

10. Minimum Distance Test PI37

11. Random Spheres Test P\38

12. The Squeeze Test PI39

13. Overlapping Sums Test PI40

14. Runs Test PI41 -P144

15. The Craps Test PI4S, PI46

Five test cases are presented here, each of them 16,777,216 bytes long. (DIEHARD
needs at least an 80 million bit long test sequence for all of its tests to run.) Their results in
the DIEHARD tests are shown in Tables 2, 3, and 4. In the first case, z2000, the initial
sequence is composed of all zero bits, and the first 2000 prime numbers are used. In the next
five cases, the initial sequence is the Thue-Morse sequence, and the first 10, 100, 1000, and
2000 prime numbers, respectively, are used.

For comparison, the results of the PRNG KISS (Marsaglia, 1995) are also included.
KISS combines three sequences: a linear-congruential sequence, a shift register sequence,



70 Noche: A Binary Sequence Generator Based on the
Thue-Morse Sequence and Multiples of Primes

and a multiply-with-carry sequence. It "seems to pass all [the DIEHARD] tests and is highly
recommended for speed and simplicity" (Marsaglia, 1995). The KISS sequence tested here is
11,468,800 bytes long and used the seed integers 1, 4, 3, and 44.

Table 2. Results of DIEHARD Tests (part 1 of 3)

z2000 tIO tlOO tl000 t2000 KISS
n, 0.3710 0.7122 0.0487 0.3038 0.7763 0.2681

/' P2 0.9985 0.9989 0.6564 0.8490 0.0446 0.8745
P3 1.0000 0.8911 0.7935 0.1323 0.0283 0.1197
P4 0.3711 0.7855 0.5869 0.8244 0.3859 0.6224
P5 0.4729 0.3859 0.3630 0.7471 0.3257 0.4290
P6 1.0000 1.0000 0.3395 0.5196 0.6396 0.6257
P7 1.0000 0.9696 0.3001 0.9557 1.0000 0.1760
P8 1.0000 0.9995 0.9288 0.2285 0.9989 0.8175
P9 1.0000 0.9589 0.2257 0.8290 0.8565 0.5601

PIO 1.0000 0.9262 0.6576 0.9061 0.7703 0.2495
PII 1.0000 0.9514 0.4302 0.2292 0.3157 0.3224
PI2 1.0000 0.9978 0.9658 0.7856 0.8688 0.2236
P13 1.0000 0.9998 0.1922 0.3428 0.5006 0.6226
PI4 1.0000 1.0000 0.3742 0.6011 0.6190 0.2059
PI5 1.0000 0.7836 0.7603 0.9723 0.9963 0.6182
PI6 1.0000 0.9985 0.3334 0.9943 0.6550 0.3116
PI7 1.0000 0.9997 0.8997 0.5360 0.4486 0.8016
PI8 1.0000 0.9997 0.9673 0.9815 0.3149 0.7877
PI9 1.0000 0.7977 0.9624 0.8863 0.3116 0.3549
P20 1.0000 1.0000 0.1865 0.8799 0.9994 0.8877
P21 1.0000 0.9977 0.5100 0.3419 0.4569 0.3522
P22 1.0000 0.1840 0.3436 0.2600 0.1090 0.9208
P23 1.0000 1.0000 0.8156 0.0406 0.4662 0.8284
P24 1.0000 0.9886 0.2342 0.3514 0.1884 0.9021
P25 1.0000 0.9425 0.8087 0.5793 0.2215 0.0736
P26 1.0000 0.8785 0.9942 0.8804 0.8377 0.5674
P27 1.0000 1.0000 1.0000 0.9979 0.9942 0.4257
P28 1.0000 1.0000 0.9935 0.9838 0.8444 0.7102
P29 1.0000 1.0000 0.9772 0.9944 0.9827 0.4844
P30 1.0000 1.0000 0.8648 0.7055 0.8611 0.5599
P31 1.0000 1.0000 0.9766 0.9800 0.9863 0.8541
P32 1.0000 1.0000 0.9990 0.8564 0.9728 0.7828
P33 1.0000 1.0000 0.7523 0.9997 1.0000 0.5882
P34 1.0000 1.0000 0.9256 0.9285 0.5489 0.6319
P35 1.0000 1.0000 0.9870 0.8772 0.7534 0.8827
P36 1.0000 1.0000 0.9969 0.9747 0.9513 0.2216

P37 1.0000 1.0000 0.9888 0.9725 0.8477 0.5639
P38 1.0000 1.0000 0.9812 0.9651 0.9942 0.0667
P39 1.0000 1.0000 0.9999 0.9640 0.9165 0.2785
P40 1.0000 1.0000 0.9997 0.8265 0.9637 0.5976
P41 1.0000 1.0000 0.9828 0.9922 0.7265 0.2186
P42 1.0000 1.0000 0.9760 0.9979 0.9986 0.6862
P43 1.0000 1.0000 0.9312 1.0000 0.9950 0.0162
P44 1.0000 1.0000 0.9991 0.9967 0.9980 0.1392
P45 1.0000 1.0000 0.9988 0.9957 0.9933 0.2739
P46 1.0000 1.0000 1.0000 1.0000 0.9988 0.0517
P47 1.0000 1.0000 0.9936 0.9294 0.9997 0.9357

P48 1.0000 \1.0000 1.0000 0.9908 1.0000 0.3454
P49 1.0000 1.0000 0.9378 1.0000 0.9933 0.0510



The Philippine Statistician, 2004

Table 3. Results of DIEHARD Tests (part 2 of 3)

z2000 t10 tlOO T1000 t2000 KISS
Pso 1.0000 1.0000 0.9447 0.9392 0.6259 0.2761
PSI 1.0000 1.0000 0.9999 0.9847 0.0507 0.7603
PS2 1.0000 1.0000 0.9833 0.9010 0.8745 0.1684
PS3 1.0000 1.0000 0.9945 0.9683 0.5655 0.9598
PS4 1.0000 1.0000 0.9772 0.5828 0.9297 0.6612
Pss 1.0000 1.0000 0.8188 0.7956 0.3823 0.4874
PS6 1.0000 1.0000 0.8293 0.9346 0.9788 0.7035
PS7 1.0000 1.0000 0.6525 0.9404 0.4349 0.9512
Pss 1.0000 1.0000 0.8600 0.5788 0.5414 0.2086
PS9 1.0000 1.0000 0.9439 0.7809 0.3823 0.7093
P60 1.0000 1.0000 0.8961 0.6424 0.2235 0.8841
P61 1.0000 1.0000 0.9998 0.5947 0.6181 0.9502
P62 1.0000 1.0000 0.9819 0.5655 0.9462 0.8460
P63 1.0000 1.0000 0.6374 0.1736 0.5548 0.6012
P64 1.0000 1.0000 0.9443 0.6857 0.5907 0.2605
P6S 1.0000 1.0000 0.9894 0.9795 0.6917 0.0890
P66 1.0000 1.0000 0.9990 0.9936 0.8905 0.5548
P67 1.0000 1.0000 1.0000 0.7508 0.8943 0.3269
P6S 1.0000 1.0000 0.9586 0.9974 0.5881 0.9439
P69 1.0000 1.0000 0.6246 0.8759 0.8079 0.8088
P70 1.0000 1.0000 0.9039 0.9995 0.9826 0.6550
P71 1.0000 1.0000 0.9883 1.0000 1.0000 0.4617
Pn 1.0000 1.0000 0.9574 0.9908 1.0000 0.5629
P73 1.0000 1.0000 0.9539 0.8667 1.0000 0.6563
P74 1.0000 1.0000 0.6869 0.9615 0.4887 0.1576
P7S 1.0000 1.0000 0.9341 0.5802 0.9301 0.6893
P76 1.0000 1.0000 0.9737 0.9062 0.9814 0.4283
P77 1.0000 1.0000 0.9994 0.8484 0.6064 0.9117
P7S 1.0000 1.0000 0.3481 0.1103 0.9606 0.6663
P79 1.0000 1.0000 0.4690 0.7755 0.8831 0.8180
Pso 1.0000 1.0000 0.5940 0.8140 0.2627 0.3848
PSI 1.0000 1.0000 0.9032 0.0572 0.4282 0.5102
PS2 1.0000 1.0000 0.9752 0.8603 0.9081 0.0555
PS3 1.0000 1.0000 0.9863 0.9990 0.5849 0.4398
PS4 1.0000 1.0000 0.2050 0.0610 0.2550 0.2598
PSS 1.0000 1.0000 0.9933 0.9949 0.6280 0.5986
PS6 1.0000 1.0000 0.2239 0.6801 0.8272 0.4761
PS7 1.0000 1.0000 0.7386 0.5814 0.5664 0.0724
Pss 1.0000 1.0000 0.2401 0.4808 0.8905 0.0138
PS9 1.0000 1.0000 0.9942 0.5501 0.1206 0.2812
P90 1.0000 1.0000 0.2109 0.4098 0.9052 0.0437
P91 1.0000 1.0000 0.8796 0.4006 0.8044 0.3713
Pn 1.0000 1.0000 0.7666 0.1493 0.9370 0.5952
P93 1.0000 1.0000 0.8877 0.8256 0.9990 0.1171
P94 1.0000 1.0000 0.1125 0.7711 0.0498 0.7358
P9S 1.0000 1.0000 0.9880 0.8124 0.2292 0.7538
P96 1.0000 1.0000 0.9134 0.5114 0.3635 0.9644
P97 1.0000 1.0000 0.9129 0.9022 0.9096 0.3949
1J9S 1.0000 1.0000 0.9637 0.9426 0.1278 0.4029

71



72 Nache: A Binary Sequence Generator Based on the
Thue-Morse Sequence and Multiples of Primes

Table 4. Results of DIEHARD Tests (part 3 of3)

z2000 tlO t100 t1000 t2000 KISS

P99 1.0000 1.0000 0.3881 0.5940 0.0980 0.8502

PIOO 1.0000 1.0000 0.7151 0.5860 0.6937 0.4098

PIOI 1.0000 1.0000 0.8910 1.0000 0.9991 0.6032

PI02 1.0000 1.0000 0.8596 0.9787 0.9809 0.6978

17103 1.0000 1.0000 0.6999 0.8550 0.9976 0.1142

PI04 1.0000 1.0000 0.7060 0.9859 0.6313 0.9850

PHis 1.0000 1.0000 0.5396 0.7593 0.7191 0.0582

PI06 1.0000 1.0000 0.6446 0.7231 0.5466 0.4784

PIO? 1.0000 1.0000 0.7657 0.8590 0.5998 0.1459

PI08 1.0000 1.0000 0.9370 0.3341 0.9366 0.7764

PI09 1.0000 1.0000 0.9788 0.9626 0.9972 0.9189

PliO 1.0000 1.0000 1.0000 1.0000 0.8349 0.3365

Pili 1.0000 1.0000 0.0057 0.3466 0.5955 0.1668

PI12 1.0000 1.0000 0.0456 0.8933 0.5467 0.2732

Pm 1.0000 0.9999 0.9848 0.9142 0.3247 0.8841

PI14 1.0000 1.0000 0.9857 0.4724 0.3456 0.5963

PIIS 1.0000 1.0000 0.2575 0.8042 0.5010 0.2929

PI16 1.0000 1.0000 0.9572 0.7441 0.9975 0.0918

PII7 1.0000 1.0000 0.9428 0.5476 0.6420 0.7820

PI18 1.0000 1.0000 0.8531 0.8603 0.4037 0.3705

PI19 1.0000 1.0000 0.4538 0.1093 0.9995 0.0389

PI20 1.0000 0.8673 0.6045 0.8819 0.8266 0.1373

PI2I 1.0000 0.9562 0.7910 0.4054 0.1517 0.9848

PI22 1.0000 0.7658 0.0721 0.6072 0.9603 0.9921

P123 1.0000 0.9790 0.1441 0.7787 0.9770 0.6217

PI24 1.0000 0.9133 0.2970 0.5766 0.8444 0.2718

PI25 1.0000 0.9946 0.8697 0.5250 0.5326 0.6614

PI26 1.0000 0.8347 0.3911 0.6134 0.5468 0.8014

Pm 1.0000 1.0000 0.9551 0.2841 0.9996 0.8939

PI28 1.0000 1.0000 0.6116 0.6001 0.9288 0.9398.

PI29 1.0000 1.0000 0.4390 0.7111 0.3382 0.2047

P130 1.0000 1.0000 0.4960 0.9820 0.8006 0.7576

PI3I 1.0000 1.0000 0.7989 0.8115 0.9100 0.2818

Pm 1.0000 1.0000 0.0715 0.6744 0.8113 0.5977

Pm 1.0000 1.0000 0.0190 0.0914 0.1225 0.9842

PI34 1.0000 1.0000 0.2324 0.6989 0.2342 0.8054

Pm 1.0000 1.0000 0.1598 0.5256 0.9767 0.8171

P136 1.0000 0.9651 0.6269 0.9902 0.9989 0.8107

Pm 0.6670 0.9949 0.4967 0.8966 0.2325 0.8361

PI38 0.3425 0.4647 0.4085 0.7463 0.4653 0.1521

PI39 1.0000 1.0000 1.0000 0.4420 0.9990 0.7997

PI40 0.9983 0.9656 0.7400 0.1966 0.7124 0.5315

PI41 0.5112 0.1506 0.6646 0.6512 0.8336 0.8084

PI42 0.9959 0.5854 0.5057 0.6346 0.7836 0.5250

PI43 0.7896 0.2180 0.2605 0.3904 0.1105 0.9071

PI44 0.8130 0.6413 0.8517 0.1351 0.6417 0.9782

PI4S 0.9603 1.0000 0.6383 0.8354 0.5905 0.5957

PI46 0.0124 1.0000 0.9842 0.5108 0.3202 0.5659



The Philippine Statistician, 2004 73

On a computer with a Pentium IV processor and a Windows XP operating system, the
time to generate the output file (using the source code in Appendix A) ranges from around 1,4
seconds (for case tl 0) to around 28 seconds (for case t2000). The KISS output file takes less
than a second to generate after the seed values are given.

4. DISCUSSION

It is implied that if all the p-values listed in Table 1 of a sequence tested by
DIEHARD lie in the range (0.025, 0.975) then the sequence is said to have passed all the
DIEHARD tests. But Marsaglia (1995) notes that even "good" PRNGs (like KISS) have a
few p-values that lie outside this range. (For example, pss = 0.0138 and PI22 = 0.992144 for
the KISS sequence tested here.)

For the method presented here, cases where the initial sequence is composed of all
zero bits perform extremely poorly in the tests, even when the number of primes f used is
quite large if= 2000 for the case z2000).

Using the initial binary sequence presented here improves the test scores. The case
t10 performs noticeably better than the case z2000 in tests 2, 5, 8, and 9, but it still
completely fails tests 4,6,7, and 12, and performs worse for tests 10 and 15. Increasingfto
100 takes care of tests 4,5,6,8,10,15, and part of7, but it still completely fails test 12 and
the other part of 7. With f = 1000, test 12 is passed, and with f = 2000, performance in test 7
improves. Note that performance in test 6 does not seem to improve much fromf= 100 tof=
2000, and that KISS performs better in this test than the method presented here.

Considering the improvement in test results from case z2000 to the other cases, one
might think that the (unmodified) Thue-Morse sequence would also yield good test results.
This is not the case. Testing just the Thue-Morse sequence yields p-values that are either
1.0000 or 0.0000. In fact, test IS for this case does not even finish due to an overflow error.

CONCLUSIONS

The binary sequence generator presented in this paper is shown to perform well in a
popular set of tests for randomness. It may be used in statistical applications that require very
large amounts of random numbers. As the sequence it generates is perfectly predictable, it
would not be ideal for security applications such as cryptography.

Some PRNGs have been found to yield erroneous results when used in certain Monte
Carlo simulations (for example, subtract-with-borrow (Peterson, 2004), LFSR (Bauke and
Mertens, 2004) and GFSR (Schmid and Wilding, 1995)). Further study on the Thue-Morse
sequence or other similar sequences may lead to more effective pseudo-random binary
sequence generators.

ACKNOWLEDGMENT

This work was supported by a teaching and research grant from the UP EEE
Foundation, Inc. Thanks to the anonymous referee for the helpful suggestions.



74 Noche: A Binary Sequence Generator Based on the
Thue-Morse Sequence and Multiples of Primes

References

ALLOUCHE, J.-P. and SHALLIT, J. (1999). "The ubiquitous Prouhet-Thue-Morse
sequence," in Sequences and Their Applications: Proceedings ofSETA '98, Springer
Verlag, 1-16.

BAUKE, H. and MERTENS, S. (2004). "Pseudo random coins show more heads than tails,"
Journal ofStatistical Physics 114: 1149-1169.

DAVIES, R. (1997). True random number generators, http://www.robertnz.net/truemg.html
(Accessed April 2004).

DAVIES, R. (2000). Hardware random number generators, http://www.robertnz.net/
hwrng.html (Accessed April 2004).

DIACONIS, P. and EFRON B. (1983). "Computer-intensive methods in statistics," Scientific
American 248(5): 96-108.

ECKHARDT, R. (1987). "Stanislaw Ulam, John Von Neumann, and the Monte Carlo
method," Los Alamos Science special issue: 131-137.

HAYES, B. (200 I). Computing Science: Randomness as a Resource, American Scientist
89(4): 300-304.

INTEL (1999). The Intel Random Number Generator, http://www.intel.com/design/chipsets/
rng/techbrief.pdf (Accessed March 2004).

L'ECUYER, P. (1994). "Uniform random number generation," Annals of Operations
Research, 53: 77-120.

L'ECUYER, P. (2004). "Random number generation," in Handbook of Computational
Statistics, eds. J. Gentle, W. Haerdle, and Y. Mori. Springer-Verlag (draft). .

MARSAGLIA, G. (1995). The Marsaglia Random Number CDROM including the
DIEHARD Battery ofTests ofRandomness, http://stat.fsu.edu/pub/diehard/ (Accessed
March 2004).

PETERSON, I. (2003). "The bias of random-number generators,"
http://www.sciencenews.org/articles/20030927/mathtrek.asp (Accessed August 2004).

SCHMID, F. and WILDING, N. (1995). "Errors in Monte Carlo simulations using shift
register random number generators," International Journal of Modern Physics C,
6(6): 781-787.

WOLFRAM, S. (2002). A New Kind ofScience. Champaign, III.: Wolfram Media, Inc.



The Philippine Statistician, 2004 75

Appendix A

1* source code for Microsoft Visual c++ 6.0 *1

#include <stdio.h>
#include <stdlib.h>

#define M 27
#define L 13~21772a

#define B 16777216
#define F 2000
#define ~~PRIME 17393

1* L is the length of the seque:lce in bits; L = 2A M *1
".. 1* B is the size of the sequence in bytes *1

1* F is the number of (odd) primes to use *1
/* MAXPRIME is the Fth odd prime (the (F+l)th prime) *1

unsigned long raise2to(unsigned long i);
void invert-prime_multiples(unsigned short prime);

l unsigned char *x;

void main(void)
{

unsigned long i, j
FILE *fp;

0, k;

/* get the first F odd primes by getting the first F+l primes *1
/* and ignoring the first prime, which is even *1
/* prime[O]=2; prime [1] = 3; the Fth odd prime" is prime[F] *1

unsigned short *prime;
prime = (unsigned short *) malloc((F+l) * sizeof(unsigned short));
unsigned char *c;
c = (uns~gned char *) malloc((MAXPRIME+1) * sizeof(unsigned char));

1* data types might need to be changed if F is increased *1

}
while (j < F);
free (c) ;

for (i = prime[j]; i <= MAXPRIME; i += prime[j])
c[i] = 0;

i = prime[j] + 1;
while (c[i] == 0)

i++;
prime [++j] = i;

for (i = 1; i <= MAXPRIMEj i++)
c I i ] = 1;

c Lt l = OJ
prime [0] = 2;
do
{

t,.
)

/* initialize the sequence by bytes instead of by bits *1
1* to reduce memory requirements and processing time *1

x = (unsigned char *) malIoc(B * sizeof(unsigned char));



76 Noche: A Binary Sequence Generator Based on the
Thue-Morse Sequence and Multiples of Primes

x(O] = Ox69;
x Lil = -x Io l ,
for (i = 1; i < (M-3); i++)

k = raise2to(i) ;
for (j = 0; j < k; j++)

x [k+j] = -x [j] ;

/* if the sequence is to be initially set to all zero bits, use */
/* for (i = 0; i < B; i++) */
/* x(i]=O; */

/* invert the bits which are multiples of the first F odd ?rimes */

for (i = 1; i <= F;' i++)
invert-prime_multiples(prime[i]) ;

/* save the file */
/* it is very important to open the file in binary mode */
/* if the file is opened in text mode, bytes with a value of */
/* 10 will be replaced with two bytes with values of 13 and 10 */
/* and the sequence will "fail" a lot of the tests */

fp = fopen("binseq.dat", "wbn
) ;

fwrite (x , B, 1, fp);
fclose (fp) ;

unsigned long raise2to(unsigned long i)
{

unsigned long j, y=l;
for (j = 1; j <= i; j++)

y = y*2;
return Yi

void invert-prime_multiples(unsigned short prime)
{

unsigned long i, ki
for (i = prime-Ii i < Li i += prime)
{

{x [k]
A Ox80; bxeakr ]

{x [k]
A OX40; break; }=

{x [k]
A Ox20; break; }

{x (k] A Ox10; break; }=
{x [k]

A Ox08; break; }
{x [k] A Ox04; break; }

1{x (k]
A Ox02; break; }=

x (k]
A = OxOli .,

case 0:

case 1:
case 2 :
case 3 :
case 4 :
case 5 :
case 6:
case 7 :

}

k = i/8i
switch (H9)
{


